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When we have lots of measurements over time, we may wish to

generalize things and study trajectories. Now, instead of time step$

are studying trends and the factors that influgheen
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Post-fire dynamics recovery (Grace et al. 2012).
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The study used in this illustration examines the dynamics offjpest
recovery in California shrublands. The hypothesis being examined
that fire rejuvenates diversity of plants in the ecosystem and that
following fire, there is a general decline in diversity until the next fi

re.
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Figure 5. Observed values of herb species richness for the 88 plots in the dataset being examined.

Diversity dynamics did show sort of a general decline, but with Ioast
of plot-to-plot variation in quantity and pattern. Also, the second and
fifth years showed strong upturns, raising questions as to whether|there
really is a trend as expected.
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Figure 2. Two examples of autoregressive models. (A) A simple autoregressive chain and (B) an
autoregressive cross-lagged model involving a response y and a covariate w.

Temporal data are often analyzed as either an autoregressive chaJnge or
a crosdag autoregressive model.
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Figure 3. Simple latent trajectory model (LTM). In this model the trajectory described by observed

measurements of response variable y over 5 time periods can be explained by an intercept « and slope §.
For the linear model, the values for 4,—A;=0, 1, 2, 3, and 4.

The SEM covariance approach to the problem of temporal dynamics
often relies on using latent variables to represent latent slopes and
intercepts. There is a need to set intercepts to 1.0 and random slopes
are used to set a progression of time steps.
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There are now several major references for this model type.
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lavaan

latent variable analysis About lavaan Tutorial Resources Version History
Tutorial Another important type of latent variable models are latent growth curve models. Growth
) modeling is often used to analyze longitudinal or developmental data. In this type of data, an
Overview . ;
outcome measure is measured on several occasions, and we want to study the change over
Before you start time. In many cases, the trajectory over time can be modeled as a simple linear or quadratic
Installation curve. Random effects are used to capture individual differences. The random effects are

conveniently represented by (continuous) latent variables, often called growth factors. In the
example below, we use an artifical dataset called Demo.growth where a score (say, a

A CFA example standardized score on a reading ability scale) is measured on 4 time points. To fit a linear growth
A SEM example model for these four time points, we need to specify a model with two latent variables: a random
intercept, and a random slope:

Model syntax 1

Model syntax 2

Meanstructures # linear growth model with 4 timepoints

Multiple groups # intercept and slope with fixed coefficients
=~ 1%t1 + 1%t2 + 1*t3 + 1*t4

=~ 0*t1 + 1%t2 + 2*t3 + 3*t4
Categorical data \

[y

Growth curves

©n

lavaan implements a special function for such models called "growth".
He has a tutorial on his training page.
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input

Estimators and

more

model <- ' i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
Mediation S =~ O%t1 + 1%t2 + 2°t3 + 3*t4
Modification indices fit <- growth(model, data=Demo.growth)
Extracting summary (fit)
information

lavaan (@.5-13) converged normally after
Number of observations
Estimator
Minimum Function Test Statistic
Degrees of freedom
P-value (Chi-square)

Parameter estimates:

Information
standard Errors

GIOWET USRS, T I S TS, TS

lavaan package provides a special growth() function:

44 iterations

400

ML
8.069

09.152

Expected
standard

Screenshot from Rosseel's tutorial.
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Figure 6. Some characteristics of the data being modeled. (A) Mean richness over time, (B) histogram of
individual slopes for the 88 trajectories, (C) mean annual precipitation values, and (D) plot of mean
richness corrected for mean annual precipitation.

Now, back to our ecological example. Here are some summary
statistics.




Hypothesized Latent Trajectory Model for Richness over Time

random slopes
& intercepts

time-invarying effects

This is our model after adjusting for precipitation variation.

This is a preview of the model we will develop in the subsequent
pages. Note there is a good bit of machinery associated with this
model type.
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Simple linear trajectory

### Model 101: simple latent curve

mod.101 <- '

# intercept and slope with fixed coefficients
i =~ 1*rl +1*r2 +1*r3 +1*rd +1*r5

s =~ 0*rl +1*r2 +2*r3 +3*r4 +4*r5"

£fit.101 <- growth(mod.101l, data=dat2)

We start with the simplest model we can develop for the five time
steps. Here the model represents the hypothesis that there is a trq
over time. Note that random intercepts apply to each of the time s
(set to 1 in the command statement). A linear slope of change ove
time is set with the progression of 0, 1, 2, 3, and 4.

nd
[eps

=

11




Model fit statistics show the model does converge, but has poor fif
the data.
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