5. Earth’s Systems

Students who demonstrate understanding can:

5-ESS2-1. Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. [Clarification Statement: Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]

5-ESS2-2. Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]

5-ESS3-1. Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.
- Develop a model using an example to describe a scientific principle. (5-ESS2-1)

Using Mathematics and Computational Thinking
Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.
- Describe and graph quantities such as area and volume to address scientific questions. (5-ESS2-2)

Obtaining, Evaluating, and Communicating Information
Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.
- Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem. (5-ESS3-1)

Disciplinary Core Ideas

ESS2.A: Earth Materials and Systems
- Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather. (5-ESS2-1)

ESS2.C: The Roles of Water in Earth’s Surface Processes
- Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2)

ESS3.C: Human Impacts on Earth Systems
- Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments. (5-ESS3-1)

Connections to other DCIs in fifth grade: N/A.

Articulation of DCIs across grade-levels: 2.ESS2.A (5-ESS2-1); 2.ESS2.C (5-ESS2-2); 3.ESS2.D (5-ESS2-1); 4.ESS2.A (5-ESS2-1); MS.ESS2.A (5-ESS2-1); MS.ESS2.B (5-ESS2-2); MS.ESS2.D (5-ESS2-1); MS.ESS3.A (5-ESS2-2)(5-ESS3-1); MS.ESS3.C (5-ESS3-1); MS.ESS3.D (5-ESS3-1)

Common Core State Standards Connections:

ELA/Literacy –
RI.1.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS3-1)
RI.1.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS2-1)(5-ESS2-2)(5-ESS3-1)
RI.1.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS3-1)
W.5.8 Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-ESS2-2)(5-ESS3-1)
W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-ESS3-1)
SL.5.5 Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS2-1)(5-ESS2-2)

Mathematics –
MP.2 Reason abstractly and quantitatively. (5-ESS2-1)(5-ESS2-2)(5-ESS3-1)
MP.4 Model with mathematics. (5-ESS2-1)(5-ESS2-2)(5-ESS3-1)
5.G.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (5-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

May 2013 ©2013 Achieve, Inc. All rights reserved.
Students who demonstrate understanding can:

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Disciplinary Core Ideas

ETS1A: Defining and Delimiting Engineering Problems
- The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. (MS-ETS1-1)

ETS1B: Developing Possible Solutions
- A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (MS-ETS1-4)
- There are systematic approaches for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (MS-ETS1-2), (MS-ETS1-3)
- Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. (MS-ETS1-3)
- Models of all kinds are important for testing solutions. (MS-ETS1-4)

ETS1C: Optimizing the Design Solution
- Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design. (MS-ETS1-3)
- The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (MS-ETS1-4)

Science and Engineering Practices

Asking Questions and Defining Problems
Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.

- Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions. (MS-ETS1-1)

Developing and Using Models
Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs. (MS-ETS1-2)

Analyzing and Interpreting Data
Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze and interpret data to determine similarities and differences in findings. (MS-ETS1-3)

Engaging in Argument from Evidence
Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world.

- Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (MS-ETS1-2)

Crosscutting Concepts

Influence of Science, Engineering, and Technology on Society and the Natural World
- All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ETS1-1)
- The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. (MS-ETS1-1)

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*
7.SP

Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (MS-ETS1-4)
MS.History of Earth

Students who demonstrate understanding can:

MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homin sapiens) to very old (such as the formation of Earth or the earliest evidence of life.). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: A assessment does not include recalling the names of specific periods or epochs and events within them.]

MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface over time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]

MS-ESS2-3. Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches.).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Science and Engineering Practices
- **Analyzing and Interpreting Data:** A analyzing data in 6-8 builds on K-5 and progresses to extending quantitative analysis to new situations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.
- **Constructing Explanations and Designing Solutions:** Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to including constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Disciplinary Core Ideas
- **ESS1.C: The History of Planet Earth**
 - The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale. (MS-ESS1-4)
 - Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.GGE)

Crosscutting Concepts
- **Patterns**
 - Patterns in rates of change and other numerical relationships can provide information about natural systems.
- **Scale, Proportion, and Quantity**
 - Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-ESS1-4, MS-ESS2-2)

Common Core State Standards Connections

<table>
<thead>
<tr>
<th>ELA/Literacy</th>
<th>11th Grade</th>
<th>12th Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST.6-8.1</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
</tr>
<tr>
<td>RST.6-8.7</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
</tr>
<tr>
<td>RST.6-8.8</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
</tr>
<tr>
<td>WHST.6-8.2</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
</tr>
<tr>
<td>SL.8.5</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
<td>(MS-ESS1-4), (MS-ESS2-3), (MS-ESS3-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics</th>
<th>11th Grade</th>
<th>12th Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.2</td>
<td>(MS-ESS2-3), (MS-ESS3-2)</td>
<td>(MS-ESS2-3), (MS-ESS3-2)</td>
</tr>
<tr>
<td>6.EE.B.6</td>
<td>(MS-ESS2-3)</td>
<td>(MS-ESS2-3)</td>
</tr>
<tr>
<td>7.EE.B.4</td>
<td>(MS-ESS2-3)</td>
<td>(MS-ESS2-3)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2014 ©2013 Achieve, Inc. All rights reserved.